
Data preparation of diagnostics plots for regression models with compositional predictors
model_diagnostics_data.RdThis function prepares the data-frame with necessary attributes for creating
regression diagnostics plots for a model with compositional predictors where
points are replaced by pie-glyphs making it easier to track various data points
in the plots. The output data-frame can be passed to
model_diagnostics_plot to create the visualisation.
Value
The original data used for fitting the model with the response and all model predictors along with the following additional columns
- .hat
 Diagonal of the hat matrix.
- .sigma
 Estimate of residual standard deviation when corresponding observation is dropped from model.
- .cooksd
 The cook's distance (
cooks.distance()) for each observation.- .fitted
 Fitted values of model.
- .resid
 The residuals for the observations.
- .stdresid
 The standardised (Pearson) residuals for the observations.
- Obs
 A unique identifier for each observation.
- Label
 The labels to be displayed besides the observations in the plot.
The quantile values for the standardised residuals generated using
qqnorm().- weights
 The weights for each observation in the model (useful in the context of weighted regression).
Examples
library(DImodels)
## Load data
data(sim1)
## Fit model
mod1 <- lm(response ~ 0 + (p1 + p2 + p3 + p4)^2, data = sim1)
## Get data for diagnostics plot
diagnostics_data <- model_diagnostics_data(mod1,
                                           prop = c("p1", "p2", "p3", "p4"))
print(head(diagnostics_data))
#>   response  p1  p2  p3  p4       .hat   .sigma      .cooksd  .fitted     .resid
#> 1   10.815 0.7 0.1 0.1 0.1 0.07512992 1.343832 0.0005750445 10.47436  0.3406361
#> 2   11.232 0.7 0.1 0.1 0.1 0.07512992 1.340067 0.0028447324 10.47436  0.7576361
#> 3   10.192 0.7 0.1 0.1 0.1 0.07512992 1.344130 0.0003951286 10.47436 -0.2823639
#> 4    8.157 0.7 0.1 0.1 0.1 0.07512992 1.299979 0.0266139030 10.47436 -2.3173639
#> 5    6.724 0.1 0.7 0.1 0.1 0.07512992 1.238479 0.0616767948 10.25177 -3.5277748
#> 6   11.093 0.1 0.7 0.1 0.1 0.07512992 1.338966 0.0035070720 10.25177  0.8412252
#>    .stdresid Obs Label         .qq
#> 1  0.2660631   1     1  0.06270678
#> 2  0.5917723   2     2  0.45376219
#> 3 -0.2205480   3     3 -0.31863936
#> 4 -1.8100401   4     4 -1.73166440
#> 5 -2.7554644   5     5 -2.39397980
#> 6  0.6570619   6     6  0.54852228
## The compositional predictors in the data are added as attributes to the data
attr(diagnostics_data, "prop")
#> [1] "p1" "p2" "p3" "p4"